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Abstract

We establish a one-to-one correspondence between Fréchet’s class of multivariate Bernoulli
distribution with symmetric marginals and the well-known family of FGM copulas. We introduce
a new stochastic representation of the family of d-variate FGM copulas. The representation is
bijective: we show that from any d-variate Bernoulli distribution, we define a corresponding d-
variate FGM copula; and we show that for any d-variate FGM copula, we find the corresponding
d-variate Bernoulli distribution. The proposed stochastic representation has many advantages,
notably establishing stochastic orders, constructing subclasses of FGM copulas and sampling.
In particular, we use the stochastic representation to develop computational methods to perform
sampling from subclasses of FGM copulas, which scale well to large dimensions.

Keywords: Multivariate Farlie-Gumbel-Morgenstern copulas, Multivariate Bernoulli distribu-
tions, Stochastic representation, Stochastic simulation, Dependence ordering

1 Introduction

A copula is a multivariate distribution function with standard uniform margins. An important
family of copulas is the Farlie-Gumbel-Morgenstern (FGM) class of copula, first studied by Eyraud
(1936), Farlie (1960), Gumbel (1960) and Morgenstern (1956). Standard references for FGM copulas
are Cambanis (1977), Johnson and Kott (1975), (Kotz and Drouet, 2001, Chapter 5), (Kotz et al.,
2004, Section 44.10). Often, one describes the FGM copula as a perturbation of the product copula
(see, e.g. Durante and Sempi (2015)), inducing moderate dependence between margins. Also, the
author of Nelsen (2007) indicates the FGM copula is a first-order approximation to the Ali-Mikhail-
Haq (AMH), Frank and Placket copulas.

The class of FGM copulas is a popular choice when working in two dimensions distributions
due to its simple shape and the exact calculus of polynomial functions. Examples of applications
of FGM copulas include finance Mai and Scherer (2014), actuarial science Bargès et al. (2011) and
bioinformatics Kim et al. (2008). When increasing dimensions, the copula retains polynomial shape,
but loses practical interest since the admissible parameter space becomes complex. For this reason,
the properties of FGM copulas in large dimensions are largely unknown.

∗Corresponding author: Etienne Marceau, etienne.marceau@act.ulaval.ca. Address: 2425, rue de l’Agriculture,
office 4177. Québec (Québec) G1V 0A6 Canada
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This paper uncovers a stochastic representation of FGM copulas using symmetric multivariate
Bernoulli distributions. This relationship allows us to leverage the extensive literature on multivari-
ate Bernoulli distributions to uncover new results for the family of FGM copulas. The discovery
of stochastic representations of multivariate models often generates new knowledge and interest
in the particular model. For instance, McNeil and Nešlehová (2009) propose a representation of
Archimedean copula generators using the Williamson d-transform, leading to new Archimedean
copula families and efficient sampling procedures. Using the main result of the current paper, one
can also develop a new understanding of FGM copulas because symmetric multivariate Bernoulli dis-
tributions turn out to be central to the construction of FGM distributions. The proposed stochastic
representation makes it feasible to use FGM copulas for high-dimensional problems. By conditioning
on the latent Bernoulli random variable, one can compute statistics under independence, replacing
tedious mathematical formulas with many computations. As an example, we propose a stochastic
sampling method that scales well to high dimensions.

We organize the paper as follows. Section 2 presents notation, definitions and basic results
on copula theory and FGM distributions. The main result of this paper appears in Section 3, in
which we show that exponential FGM distributions (and therefore FGM copulas) have a stochastic
representation based on symmetric multivariate Bernoulli distributions. In Section 4, we provide
new results on dependence ordering within the class of FGM copulas, also identifying the extremal
positive dependence FGM copula under different stochastic orderings. We leverage these findings
to provide results for measures of multivariate association in Section 5. Then, Sections 6 and 7
explore in-depth bivariate and trivariate FGM distributions. In Section 8, we provide an example
of how one can use a known symmetric multivariate Bernoulli distribution to construct a subfamily
of FGM distributions. Based on a Markov-Bernoulli process, we construct a subfamily of FGM
copulas exhibiting autoregressive dependence structures between marginals. Section 9 provides a
new algorithm to sample from multivariate FGM distributions that scale well to large dimensions.

2 FGM copulas and basic results

This section provides background on copulas and FGM distributions. We begin by presenting
notation. Let x denote a vector (x1, . . . , xd) ∈ Rd. All expressions such as x + y,x × y or x ≤ y
represent componentwise operations. The symbol X is reserved for a random vector on Rd with
cumulative distribution function (cdf) FX defined by FX(x) = Pr(X ≤ x) for any x ∈ Rd. We
denote the Fréchet class of univariate marginals F1, . . . , Fd by Γ(F1, . . . , Fd).

Let B(x) be the cdf of a symmetric Bernoulli distribution, that is, B(x) = FI(x) = 1
21[0,∞)(x) +

1
21[1,∞)(x), x ≥ 0, where 1A(x) = 1, if x ∈ A, and 1A(x) = 0, otherwise. The multivariate rv I
represents a d-dimensional vector of binary rvs with joint cdf FI ∈ Bd, where Bd = Γ(B1, . . . , Bd).
The joint probability mass function (pmf) of I is denoted by fI where fI(i) = Pr(I1 = i1, . . . , Id =
id), for i = (i1, . . . , id) ∈ {0, 1}d.

Let Ed denote the Fréchet class of all multivariate exponential distributions with exponential of
mean 1 as marginals, whose cdfs are Gj(x) = G(x) = 1 − e−x, x ≥ 0, for j ∈ {1, ..., d}, that is,
Ed = Γ(G1, ..., Gd).

Definition 2.1. A (d-variate) copula is a function C : [0, 1]d → [0, 1] satisfying

1. C(u1, . . . , ud) = 0 if any uj = 0, j ∈ {1, . . . , d}.

2. C(u1, . . . , ud) = uj if uk = 1 for all k ∈ {1, . . . , d} and k 6= j.
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3. C is d-increasing on [0, 1]d, that is,

2∑
i1=1

· · ·
2∑

id=1

(−1)i1+···+idC(u1i1 , . . . , udid) ≥ 0,

for all 0 ≤ uj1 ≤ uj2 ≤ 1 and j ∈ {1, . . . , d}.

We denote Cd as the class of d-variate copulas. The following Theorem from Sklar (1959) is the
essential tool to extract copulas from multivariate distributions.

Theorem 2.2 (Sklar’s Theorem). Let H be a d-variate distribution function with margins F1, . . . , Fd.
Then there exists a d-variate copula C such that for all x ∈ Rd,

H(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

If H has continuous margins, the copula C is unique, otherwise it is unique on the set

Range(F1)× · · · × Range(Fd).

In particular, if X is a continuous random vector with cdf FX and margins F1, . . . , Fd and
U is a random vector distributed as the copula C, we have U d

= (F1(X1), . . . , Fd(Xd)) and X d
=

(F−11 (U1), . . . , F
−1
d (Ud)), where

d
= means equality in distribution.

2.1 Family of exponential FGM distributions

We define EFGMd as the family of all d-variate FGM distributions with exponential of mean 1 as
marginals, with EFGMd ⊂ Ed. A d-variate exponential FGM distribution has cdf F ∈ EFGMd

F (x) =
d∏

m=1

(
1− e−xm

)1 +
d∑

k=2

∑
1≤j1<···<jk≤d

θj1...jk

k∏
l=1

e−xjl

 , x ∈ Rd+, (1)

with parameters denoted by the vector

θ = (θj1...jk : 1 ≤ j1 < · · · < jk ≤ d, k ∈ {2, . . . , d}) . (2)

We call θ the dependence parameter vector since it captures the dependence induced in the multi-
variate distribution. In addition, when referring to the parameters with k indices θj1...jk , 1 ≤ j1 <
· · · < jk ≤ d, we use the term k−dependence parameters, k ∈ {2, . . . , d}. The number of parameters
in a d-variate exponential FGM distribution is

d? = |θ| = 2d − d− 1. (3)

The d-variate exponential FGM distribution exists if θ ∈ Td where

Td =

θ ∈ Rd
?

: 1 +

d∑
k=2

∑
1≤j1<···<jk≤d

θj1...jkεj1εj2 . . . εjk ≥ 0

 , (4)

for {εj1 , εj2 , . . . , εjk} ∈ {−1, 1}d. The 2d constraints of its definition in (4), which has been derived in
Cambanis (1977), imply that Td ⊆ [−1, 1]d

? . Finally, each k-margin of F ∈ EFGMd is a multivariate
exponential distribution in EFGMk for k ∈ {2, . . . , d}.
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2.2 Family of FGM copulas

Let CFGMd be the subset of Cd corresponding to the family of d-variate FGM copulas. One obtains
the family of FGM copulas by evoking Sklar’s Theorem on exponential FGM distributions. Since
F ∈ EFGMd , the copula C associated to F is obtained applying the inversion method described in
Section 3.1 of Nelsen (2007). Denoting F−1Yj

as the generalized inverse of FYj , that is F−1Yj
(u) =

inf{x ∈ R : F−1Yj
(x) ≥ u} for u ∈ [0, 1] and j ∈ {1, ..., d}, we find

C(u1, . . . , ud) = FY

(
F−1Y1

(u1), . . . , F
−1
Yd

(ud)
)
, u ∈ [0, 1]d,

where F−1Yj
(u) = G−1(u) = − ln(1 − u), u ∈ [0, 1] and limu↑1G

−1(u) = ∞. One obtains the
expression for a FGM copula:

C (u) =

d∏
m=1

um

1 +
d∑

k=2

∑
1≤j1<···<jk≤d

θj1...jkuj1uj2 . . . ujk

 u ∈ [0, 1]d, (5)

where uj = 1− uj , j ∈ {1, . . . , d}. When d = 2, (5) becomes the well-known expression of bivariate
FGM copulas with d? = 1 parameter (denoted θ12) and given by

C (u1, u2) = u1u2 + θ12u1u2u1u2, (u1, u2) ∈ [0, 1]2,

with θ12 ∈ T2 = [−1, 1]. The association measures Kendall’s tau and Spearman’s rho are τ = 2θ12/9
and ρ = θ12/3 respectively.

3 Main result

The stochastic representation of a d-variate FGM copula is obtained through the joint cdf of the
vector of rvs defined as follows. Let I be a vector of multivariate Bernoulli rvs, Z0 = (Z1,0, . . . , Zd,0)
be a vector of independent exponential rvs with mean 1/2 and Z1 = (Z1,1, . . . , Zd,1) be a vector of
independent exponential rvs with mean 1.

Theorem 3.1. Define the vector of rvs Y = (Y1, . . . , Yd) as

Yj = Zj,0 + IjZj,1, ∈ {1, . . . , d} . (6)

Then, Y follows a multivariate distribution with exponential marginals with mean 1 and joint cdf
given by

FY (x) =
∑

i∈{0,1}d
fI(i)

d∏
j=1

(
1− e−xj

) (
1 + (−1)ije−xj

)
, x ∈ Rd+. (7)

In the following theorem, we identify the dependence structure behind FY ∈ EFGMd .

Theorem 3.2. Let I be a vector of Bernoulli rvs with FI ∈ Bd, Y = (Y1, . . . , Yd) with Yj , j ∈
{1, . . . , d} as defined in (6). Then, (1) and (7) both uniquely define an exponential FGM distribution,
with

θj1...jk = (−2)kEI

[
k∏
l=1

(
Ijl −

1

2

)]
. (8)

Indeed, the following bijection holds:
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• Let θ ∈ Td, then there exists a rv I with FI ∈ Bd with pmf

fI(i) =
1

2d

1 +

d∑
k=2

∑
1≤j1<···<jk≤d

(−1)ij1+···+ijk θj1...jk

 , i ∈ {0, 1}d. (9)

• Let FI ∈ Bd, then there exists a FY ∈ EFGMd with

θj1...jk =
∑

(ij1 ,...,ijk)∈{0,1}k
(−1)ij1+···+ijk fIj1 ,...,Ijk (ij1 , . . . , ijk) , (10)

for 1 ≤ j1 < · · · < jk ≤ d and k ∈ {2, . . . , d}.

From the expression FY in Theorem 3.1, we propose an alternative representation of a d-variate
FGM copula in the following corollary.

Corollary 3.3. If the conditions of Theorem 3.1 are satisfied, then the copula C that is directly
extracted from the expression of FY in (7) has the following form:

C (u) =
∑

i∈{0,1}d
fI(i)

d∏
m=1

um
(
1 + (−1)imum

)
, u ∈ [0, 1]d. (11)

Let us examine the values of θ in (8). Following Chapter 34, Section 2.1 in Johnson et al. (1997),
we denote the r = (r1, . . . , rd)’th central mixed moment of I by

µr(I) = E

 d∏
j=1

(Ij − E[Ij ])
rj

 , (12)

where r ∈ Nd. Using (12), the expression for the parameter θj1...jk in (8) becomes

θj1...jk = (−2)kµ1k(Ij1 , . . . , Ijk),

where 1k is a k-dimensional vector of ones, 1 ≤ j1 < · · · < jk ≤ d, and k ∈ {2, . . . , d}. Note that one
can construct a multivariate Bernoulli distribution by specifying every probability fI(i), i ∈ {0, 1}d,
or by specifying the central moments in (12), see Teugels (1990) for some equivalence formulas.
A FGM copula is therefore defined, up to a constant, by the central mixed moment of the latent
Bernoulli rvs. From here on, we call the representation in (5) with dependence parameter vector
θ, the natural representation, due to the link between the dependence parameter vector θ and the
central moments of the Bernoulli distribution (−2)kµ1k(Ij1 , . . . , Ijk), 1 ≤ j1 < · · · < jk ≤ d, and
k ∈ {2, . . . , d}. We call the representation in (11) the stochastic representation.

Remark 3.4. The expression of C in (11) allows one to establish a link to another stochastic rep-
resentation of a FGM copula. Let V j = (V1,j , . . . , Vd,j), j ∈ {0, 1}, be a vector of independent
and identically distributed (iid) rvs, where V ∼ Unif (0, 1). Define Vm,[0] = min(Vm,0, Vm,1)
and Vm,[1] = max(Vm,0, Vm,1), m ∈ {1, . . . , d}. Since Vm,[im] ∼ Beta(1 + im, 2 − im), we have
FVm,[im]

(um) = (u2m)im(1 − (1 − um)2)1−im = um
(
1 + (−1)imum

)
, um ∈ [0, 1], m ∈ {1, . . . , d}.

Then, C in (11) is also

C(u) =
∑

i∈{0,1}d
fI(i)

d∏
m=1

FVj,[im]
(um) = EI

[
d∏

m=1

FVj,[Im]
(um)

]
, u ∈ [0, 1]d. (13)
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Hence, we establish a connection between the novel stochastic representation and the order-statistics-
based method to generate a FGM copula described in Baker (2008). In the current paper, we
go further by studying the underlying multivariate Bernoulli distribution in connection with the
dependence parameter vector θ. Also, (11) and (13) emphasize the link between our stochastic
representation and the empirical beta copula (with n = 2) studied in Segers et al. (2017).

Remark 3.5. If one does not impose any structure on the natural representation, the number of
parameters of a d-variate FGM copula is d? = |θ| = 2d − d − 1. For d = 2, 5, 10, 20, the number
of parameters grows at an exponential rate to d? = 1, 26, 1 013, 1 048 555, which hinders the use
of FGM copulas in practical contexts even when d is not so large. One can build on Theorem
3.2’s conclusions to propose subfamilies of FGM copulas with solely one parameter in which the
estimation of the parameters becomes tractable, see Section 8 for an example. Theorem 3.2 certifies
the validity of parameters θ ∈ Td when one defines a FI ∈ Bd and uses (10).

Remark 3.6. Another issue with the natural representation is parameter interpretation. The pa-
rameters of the d-variate FGM copula becomes difficult to interpret when d becomes large. Even
for simple parameters, it isn’t obvious how parameters relate from one dimension to the next. For
instance, we will show that for d = 2, extreme positive dependence is achieved when θ12 = 1. For
d = 3, extreme positive dependence is achieved for θ12 = θ13 = θ23 = 1 and θ123 = 0. Hence,
one could believe that the pattern θj1j2 , 1 ≤ j1 < j2 ≤ d and k-dependence parameters equal to
zero for k ∈ {3, . . . , d} yields a valid copula. However, when d = 4 with the set of parameters
θ = (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0), evaluating the copula density function at u = (0, 0, 1, 1) yields −1,
so the set of parameters does not yield a valid copula according to Definition 2.1. However, one can
leverage the stochastic representation along with the Fréchet-Hoeffding upper bound of multivariate
Bernoulli distributions to determine the shape of the copula under extreme positive dependence.
The representation from Theorem 3.2 provides an interpretation after converting the dependence
parameters into the pmf of I, see Section 4.2 for more on the extreme positive dependence of FGM
copulas.

Other researchers have found a link between multivariate Bernoulli rvs and the family of FGM
copulas. In Sharakhmetov and Ibragimov (2002) and Fontana and Semeraro (2018), the authors
show that the pmf of multivariate Bernoulli rvs with given means can be expressed as a polynomial
representation that has the shape of a FGM copula. In this paper, we show that any FGM copula has
a stochastic representation that has a one-to-one relationship with symmetric multivariate Bernoulli
rvs. In the remainder of this paper, we investigate the implications of the main result.

4 Dependence ordering

We aim to compare vectors of rvs, say V = (V1, . . . , Vd) and V ′ = (V ′1 , . . . , V
′
d), where, for each j ∈

{1, . . . , d}, Vj and V ′j have the same marginal distribution. Given this condition on the marginals,
we rely on dependence stochastic orders. We refer the reader to Sections 3.8 and 3.9 of Müller and
Stoyan (2002) for a detailed presentation of the topics briefly recalled in this section, in particular
the supermodular order and three other dependence orders: the lower concordance order (�cL), the
upper concordance order (�cU ), and the concordance order (�c). According to Definition 3.8.5 of
Müller and Stoyan (2002), V �cL V ′ if FV (x) ≤ FV ′(x) for all x and V �cU V ′ if FV (x) ≤ FV ′(x)
for all x. If V �cL V ′ and V �cU V ′, then V �c V ′.
Definition 4.1 (Supermodular order). We say V is smaller than V ′ under the supermodular order,
denoted V �sm V ′, if E [φ(V )] ≤ E [φ(V ′)] for all supermodular functions φ, given that the
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expectations exist. A function φ : Rd → R is said to be supermodular if

φ(x1, . . . , xi + ε, . . . , xj + δ, . . . , xd)− φ(x1, . . . , xi + ε, . . . , xj , . . . , xd)

≥ φ(x1, . . . , xi, . . . , xj + δ, . . . , xd)− φ(x1, . . . , xi, . . . , xj , . . . , xd)

holds for all x ∈ Rd, 1 ≤ i ≤ j ≤ d and all ε, δ > 0.

Additional details on supermodular order can be found in Shaked and Shanthikumar (2007)
and Denuit et al. (2006). Note that the supermodular order satisfies the nine desired properties for
dependence orders, as mentioned in Section 3.8 of Müller and Stoyan (2002). As shown in Theorem
3.9.5 and Example 3.9.7 of Müller and Stoyan (2002), the supermodular order is stronger than the
concordance order. For that reason, we focus mainly on the supermodular order.

4.1 General result

Let I and I ′ be multivariate symmetric Bernoulli distributions. Let Z ′0, and Z
′
1 be copies of Z0,

and Z1, where I,Z0, Z1, I ′,Z ′0, and Z
′
1 are independent. From (6), we define Y = Z0 + IZ1 and

Y ′ = Z ′0 + I ′Z ′1. By Theorem 3.2, it follows that FY , FY ′ ∈ EFGMd . Define U = (U1, . . . , Ud) and
U ′ = (U ′1, . . . , U

′
d) with

Uj = 1− exp(−Yj) and U ′j = 1− exp(−Y ′j ), j ∈ {1, . . . , d}. (14)

Then, by Theorem 3.2, FU = C and FU ′ = C ′ with C,C ′ ∈ CFGMd . Finally, we define the two
vectors of rvs X = (X1, ..., Xd) and X ′ = (X ′1, ..., X

′
d) where FXj = FX′j = Hj , j ∈ {1, ..., d}, and

FX(x) = C(H1(x1), ...,Hd(xd)) and FX′(x) = C ′(H1(x1), ...,Hd(xd)), (15)

for x ∈ Rd. Let Hd = Γ(H1, ...,Hd) be the Fréchet class of all multivariate distributions with
univariate marginals H1, . . . ,Hd. We define HFGMd ⊂ Hd as the family of all multivariate FGM
distributions defined with copula C ∈ CFGMd and univariate marginals H1, . . . ,Hd, as in (15). It
follows that

Xj
d
= H−1j (Uj) and X ′j

d
= H−1j (U ′j), j ∈ {1, ..., d}. (16)

Now, we are in a position to state the following result.

Theorem 4.2. The following relationships hold:

1. If I �sm I ′ holds, then Y �sm Y ′, U �sm U ′, and X �sm X ′.

2. If I �c I ′ holds, then Y �c Y ′, U �c U ′, and X �c X ′.

3. If I �cU I ′ holds, then Y �cU Y ′, U �cU U ′, and X �cU X ′.

4. If I �cL I ′ holds, then Y �cL Y ′, U �cL U ′, and X �cL X ′.

Proof. We provide a detailed proof of item 1; the three other items follows the same sequence of
arguments. The proof follows from theorems which can be found in Shaked and Shanthikumar
(2007); the references to every theorem in this proof refer to the latter source. Applying both
Theorems 9.A.14 and 9.A.9(b) with (7) and I �sm I ′, it follows that Y �sm Y ′. Since the
supermodular order is closed under all increasing transformations as stated in Theorem 9.A.9(a),
Y �sm Y ′ and (14) implies U �sm U ′. Using the same argument, X �sm X ′ follows by combining
U �sm U ′ and (16).
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For the concordant case, by Theorems 9.A.6, 9.A.5(a), (7), and I �c I ′, we obtain Y �c Y ′.
Since the concordance order is closed under all increasing transformations as stated in the comments
of Theorem 9.A.4, we have U �c U ′ and X �c X ′.

The lower and upper orthant cases follow from Theorems 6.G.7, 6,G3(b), (7), and I �cL [�cU ] I ′,
we obtain Y �cL [�cU ]Y ′. Since the lower [upper] concordance order is closed under all increasing
transformations as stated in Theorem 6.G.3(a), we have U �cL [�cU ] U ′ and X �cL [�cU ] X ′.

Theorems 3.2 and 4.2 enable one to derive the conditions under which the supermodular (or
dependence) order holds within EFGMd , CFGMd , and HFGMd , given that the corresponding conditions
are satisfied such that the supermodular and the three other dependence orders hold within Bd.
Result 1 of Theorem 4.2 has important implications for risk modeling in finance and actuarial
science, as exposed in Denuit et al. (2006).

4.2 Extremal positive dependent element

Theorems 3.2 and 4.2 provide the tools to identify extremal positive dependent element on CFGMd ⊂
Cd and HFGMd ⊂ Hd, under the supermodular order, for any d ≥ 2. The inequality

C (u) ≤M (u) , u ∈ [0, 1]d,

holds for all C ∈ Cd, where M is the Fréchet-Hoeffding upper bound copula defined by

M (u) = min (u1, . . . , ud) , u ∈ [0, 1]d. (17)

As mentioned, for example, in Section 4.7.4.1 of Denuit et al. (2006), the Fréchet-Hoeffding upper
bound copula M as defined in (17) is the cdf of the vector of comonotonic rvs U+ = (U+

1 , ..., U
+
d ),

that is FU+ = M .
Let the rv W follow a standard uniform distribution, that is, W ∼ Unif(0, 1). The two vectors

of comonotonic rvs I+ = (I+1 , ..., I
+
d ) and X+ = (X+

1 , ..., X
+
d ) are represented in terms of this

single rv with I+j
d
= B−1(W ) and X+

j
d
= H−1(W ), j ∈ {1, . . . , d}. The cdfs of the two vectors of

comonotonic rvs I+ and X+ correspond to

FI+(i) = M(B1(i1), . . . , Bd(id)), i ∈ {0, 1}d,

and
FX+(x) = M(H1(x1), . . . ,Hd(xd)), x ∈ Rd.

Note that the values of the joint pmf of all subsets (I+j1 , . . . , I
+
jk

) of I+ are given by

fI+j1 ,...,I
+
jk

(ij1 , . . . , ijk) =


1
2 , ij1 = · · · = ijk = 0,
1
2 , ij1 = · · · = ijk = 1,

0, otherwise,
(18)

for 1 ≤ j1 < j2 < . . . < jk ≤ d and k ∈ {2, . . . , d}.
By Proposition 6.3.6 of Denuit et al. (2006), the following relations hold:

I � I+ ∀ FI ∈ Bd, (19)

U � U+ ∀ C ∈ Cd, and X � X+ ∀ FX ∈ Hd. While FI+ ∈ Bd, we know that FU+ = M /∈ CFGMd

and FX+ /∈ HFGMd . In other words, the Fréchet-Hoeffding upper bound for I does not induce the
Fréchet-Hoeffding upper bound for U or X.
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However, by Theorem 4.2 and the one-to-one correspondence, we know that, under the super-
modular order sense (referring to the expression proposed in section 6.3.7 of Denuit et al. (2006)),
there is a unique extremal positive dependent (EPD) element UEPD with FUEPD = CEPD ∈ CFGMd

such that U �sm UEPD holds for all FU = C ∈ CFGMd . Similarly, by (15), there is a unique
extremal positive dependent vector of rvs XEPD with FXEPD ∈ HFGMd , where FXEPD(x) =
CEPD (H1(x1), ...,Hd(xd)) for x ∈ Rd, such that X �sm XEPD holds for all FX ∈ HFGMd .

In the following, we identify the extremal positive dependent element of CFGMd under the super-
modular order sense, and we provide the expression for the EPD copula CEPD within the family of
multivariate FGM copulas.

Theorem 4.3. A FGM copula constructed with the representation in Theorem 3.2 with the vector
of comonotonic rvs I+ is the EPD copula CEPD ∈ CFGMd , d ≥ 2, that is,

U �sm UEPD ∀ FU ∈ CFGMd , (20)

and
X �sm XEPD ∀ FX ∈ HFGMd . (21)

The expression of the EPD copula CEPD is given by

CEPD (u) =
d∏
j=1

uj

1 +

b d2c∑
k=1

∑
1≤j1<···<j2k≤d

uj1 · · ·uj2k

 , u ∈ [0, 1]d, (22)

where byc is the floor function returning the greatest integer smaller or equal to y. An alternative
expression to (22) is

CEPD (u) =
1

2

d∏
m=1

(1− u2m) +
1

2

d∏
j=1

u2j , u ∈ [0, 1]d. (23)

Proof. The relations in (20) and (21) follow from Theorem 4.2 and the result in (19). To derive
CEPD, we replace (18) in (11). The alternative expression of CEPD in (23) results by using (11)
with (18).

Remark 4.4. One obtains the extremal positive dependence within bivariate FGM copulas with
parameter θ12 = 1. For CEPDd and d > 2, the parameters are such that the k-dependence parameters
are 1 for k even and 0 for k odd. One can express the parameters compactly for both even and odd
k-dependence parameters as θj1...jk =

(
1 + (−1)k

)
/2, for 1 ≤ j1 < . . . jk ≤ d and k = {2, . . . , d}.

5 Measures of multivariate association

Let X = (X1, . . . , Xd) be a d-vector of rvs with continuous marginals H1, ...,Hd and joint cdf
FX(x) = C(H1(x1), . . . ,Hd(xd)), x ∈ Rd, where C ∈ Cd. We define the d-variate independence
copula by C⊥(u) =

∏d
j=1 uj , u ∈ [0, 1]d. Measures of multivariate association are closely related

to notions of dependence, which are themselves parallel to multivariate dependence orders. The
following are definitions of the three most common ones (see Definition 5.3.18 in Denuit et al.
(2006)).

• X is positively lower orthant dependent (PLOD) if C(u) ≥ C⊥(u), for all u ∈ [0, 1]d, that is,
if the probability that the variables X simultaneously take small values is at least as great as
it would be if they were independent.
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• X is positively upper orthant dependent (PUOD) if C(u) ≥ C
⊥

(u), for all u ∈ [0, 1]d, that
is, if the probability that the variables X simultaneously take large values is at least as great
as it would be if they were independent.

• X is positively orthant dependent (POD) if both inequalities hold.

When d = 2, Spearman’s rho is defined by

ρS (X1, X2) = 12

∫
[0,1]2

C(u1, u2)dC
⊥(u1, u2)− 3 = 12

∫
[0,1]2

C⊥(u1, u2)dC(u1, u2)− 3. (24)

When C ∈ CFGM2 , we have ρS (X1, X2) = θ12/3, as mentioned in the introduction. In Nelsen (1996),
the author analyzes two d-variate extensions of Spearman’s rho defined in (24) in a multivariate
setting :

ρcLd (X) =
d+ 1

2d − (d+ 1)

[
2d

(∫
[0,1]d

C(u)dC⊥(u)

)
− 1

]
(25)

and

ρcUd (X) =
d+ 1

2d − (d+ 1)

[
2d

(∫
[0,1]d

C⊥(u)dC(u)

)
− 1

]
. (26)

Hence, ρcLd (ρcUd ) is an average of the positively lower (upper) orthant association.
We mention that (25) and (26) were initially introduced in Wolff (1980) and Joe (1990), respec-

tively. The author of Nelsen (1996) introduced a third version of d-variate Spearman’s rho that
corresponds to the average of ρcLd and ρcUd , as follows:

ρcd (X) =
ρcLd (X) + ρcUd (X)

2
. (27)

As explained in Nelsen (1996), for d = 2, ρcL2 (X) = ρcU2 (X) = ρc2 (X) = ρS (X).
Following Schmid and Schmidt (2007) and Gijbels et al. (2021), we also define

ρpwd =
1(
d
2

) ∑
1≤j1<j2≤d

ρS(Xj1 , Xj2)

as the average of bivariate Spearman’s rhos.
For two recent reviews and analysis of ρcLd , ρcUd , and ρpwd , we refer the reader to García-Gómez

et al. (2021) and Gijbels et al. (2021), and the references therein. See also these two references for
empirical applications of measures of multivariate associations. In Schmid and Schmidt (2007), the
authors examine the estimation procedure of (25) and (26) based on the empirical copula, and they
provide the empirical estimators of those two measures of multivariate associations. In Pérez and
Prieto-Alaiz (2016), the authors propose and discuss alternatives to those estimators since they can
take values out of the parameter space. The following result holds for d-variate Spearman’s rhos.

Theorem 5.1. Let X and X ′ be such that FX , FX′ ∈ Hd. If X �cL X ′, then ρcLd (X) ≤ ρcLd (X ′).
IfX �cU X′, then ρcUd (X) ≤ ρcUd (X ′). IfX �c X′, then ρcd(X) ≤ ρcd(X

′) and ρpwd (X) ≤ ρpwd (X ′).

Proof. The relationship ρcLd (X) ≤ ρcLd (X ′) follows both from the definition of ρcLd and "�c⇒�cL".
Also, ρcUd (X) ≤ ρcUd (X ′) follows from "�c⇒�cU" and Lemma 3.3.1 of Joe (1990). From the two
previous inequalities and the definition of "�c", the inequality ρcd(X) ≤ ρcd(X

′) holds. Finally,
since the concordance order is closed on marginalization and by the definition of ρpwd , we obtain
ρpwd (X) ≤ ρpwd (X ′).
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Theorem 5.1 holds because the measures studied in this section satisfy the axiom of concordance
as defined in Schmid et al. (2010) and the axiom of ordering as defined in Gijbels et al. (2021), stating
that that if C1 � C2, then κ(C1) ≤ κ(C2), where κ is a multivariate association measure. Therefore,
the results from this section follow directly from Theorem 4.2.

If FX ∈ HFGMd (that is, C ∈ CFGMd ), then (25) and (26) become

ρcLd (X) =
d+ 1

d?

 d∑
k=2

∑
1≤j1<···<jk≤d

θj1...jk

(
1

3

)k (28)

and

ρcUd (X) =
d+ 1

d?

 d∑
k=2

∑
1≤j1<···<jk≤d

θj1...jk

(
−1

3

)k , (29)

where the denominator 2d− (d+ 1) in both (28) and (29) coincides with the number of parameters
d? of a d-variate FGM copula as defined in (3). Expressions in (28) and (29) generalized those
provided in Example 2 of Nelsen (1996) for d = 3, and were also derived in the supplementary
materials of Gijbels et al. (2021). Replacing (28) and (29) in (27), we find that

ρd (X) =
d+ 1

d?

b
d
2c∑
l=1

∑
1≤j1<···<j2×l≤d

θj1...j2×l

(
1

3

)2×l
 .

Note that both definitions in (28) and (29) use all the values of the dependence parameter vector
θ. However, the k-dependence parameters, for k ∈ {3, 5, 7, . . . }, does not contribute to the value of
ρd(X). One interpretation is that (28) and (29) aggregate some knowledge about the dependence
structure of a d-variate FGM copula, either in the lower or the upper orthants.

For d ∈ {3, 4, . . .}, we decompose (28) and (29) as follows:

ρcLd (X) =
d+ 1

3d?

∑
1≤j1<j2≤d

ρS(Xj1 , Xj2) +
d+ 1

d?

 d∑
k=3

∑
1≤j1<···<jk≤d

θj1...jk

(
1

3

)k (30)

and

ρcUd (X) =
d+ 1

3d?

∑
1≤j1<j2≤d

ρS(Xj1 , Xj2) +
d+ 1

d?

 d∑
k=3

∑
1≤j1<···<jk≤d

θj1...jk

(
−1

3

)k . (31)

Corollary 5.2. Let X and X ′ be such that FX , FX′ ∈ HFGMd . If X �cL X ′, then ρcLd (X) ≤
ρcLd (X ′). If X �cU X ′, then ρcUd (X) ≤ ρcUd (X ′). If X �c X ′, then ρcd(X) ≤ ρcd(X

′) and
ρpwd (X) ≤ ρpwd (X ′).

Both (30) and (31) clearly exhibit that ρcLd and ρcUd aim to measure the global dependence
between the components of X. In other words, ρcLd and ρcUd capture the pairwise association
through the Spearman’s rhos for all pairs of X but also to measure the d-tuple-wise association,
for d ∈ {3, 4, . . . }, among the components of X. See Durante et al. (2014) for a discussion on the
distinction between pairwise and global dependence.
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Corollary 5.3. Let X and XEPD be such that FX , FXEPD ∈ Hd. It follows that ρcLd (X) ≤
ρcLd (XEPD) and ρcUd (X) ≤ ρcUd (XEPD), where

ρcLd (XEPD) = ρcUd (XEPD) = ρcd(X
EPD) =

d+ 1

d?

[
1

2

(
2

3

)d
+

1

2

(
4

3

)d
− 1

]
. (32)

Moreover, ρpwd (X) ≤ ρpwd (XEPD) = 1/3.

Proof. The inequalities are a consequence of the combination of Theorem 4.3 and Theorem 5.1. It
implies that ρcLd (XEPD) = ρcUd (XEPD) = ρcd(X

EPD). From (28), we find

ρcLd (X) =
d+ 1

d?

[
d∑

k=2

(
d

k

)(
1

3

)k 1

2

(
1 + (−1)k

)]

=
d+ 1

d?

[
1

2

d∑
k=0

(
d

k

)(
1

3

)k
+

1

2

d∑
k=0

(
d

k

)(
−1

3

)k
− 1

]

=
d+ 1

d?

[
1

2

(
1 +

1

3

)d
+

1

2

(
1− 1

3

)d
− 1

]
.

Remark 5.4. Even if ρcd(X
+) = 1 for any d ∈ {2, 3, . . . }, note from (32) that ρcd(X

EPD) is a strictly
decreasing function of d for d ∈ {3, 4, . . . }. Indeed, the dominant term is (4/3)d in the numerator
and 2d in the denominator, so we have lim

d→∞
ρd(X

EPD) = 0.

6 Bivariate FGM copulas

We aim to improve our understanding of the family of bivariate FGM copulas. To achieve this, the
values of the joint pmf fI1,I2 of a pair (I1, I2) of Bernoulli rvs are gathered within a 4-dimensional
vector f(I1,I2) as follows:

f(I1,I2) = (fI1,I2(0, 0), fI1,I2(0, 1), fI1,I2(1, 0), fI1,I2(1, 1)) . (33)

Given the constraints fI1,I2(i1, i2) ≥ 0, (i1, i2) ∈ {0, 1}2, and
∑

(i1,i2)∈{0,1}2 fI1,I2(i1, i2) = 1, the pmf
of a bivariate Bernoulli rvs has three free parameters. We represent the set of all admissible values
of (fI1,I2(0, 0), fI1,I2(0, 1), fI1,I2(1, 0)) as the tetrahedron (inspired from Figure 1 of Diaconis (1977))
depicted within the 3-dimensional cartesian graph in Figure 1. The tetrahedron represents a convex
hull of four extremal points that correspond to the four vertices (see Rockafellar (2015) for details on
convex analysis). Hence, the four vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1) of the tetrahedron
in Figure 1 are the extremal points of the set of all admissible values of the 4-dimensional vector
f(I1,I2) given by (0, 0, 0, 1), (1, 0, 0, 0), (0, 1, 0, 0), and (0, 0, 1, 0), respectively.

In the specific case when F(I1,I2) ∈ B2, the following additional constraints hold:∑
i1∈{0,1}

fI1,I2(i1, 0) =
∑

i1∈{0,1}

fI1,I2(i1, 1) =
∑

i2∈{0,1}

fI1,I2(0, i2) =
∑

i2∈{0,1}

fI1,I2(1, i2) =
1

2
.

This means that symmetric bivariate Bernoulli distributions have only one free parameter, say
fI1,I2(0, 0) ∈ [0, 1/2].
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•

•

(
1
2 , 0, 0

)

(
0, 12 ,

1
2

)
(
1
4 ,

1
4 ,

1
4
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1+θ
4 , 1−θ4 , 1−θ4

)
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•

•

-1

0

1

θ

Dependence
parameter θ12

Figure 1: Tetrahedron: set of all possible values of f(I1,I2)(i1, i2), (i1, i2) ∈ {0, 1}2, where a point is
a 4-dimensional vector. Segment between (1/2, 0, 0, 1/2) and (0, 1/2, 1/2, 0): Fréchet’s class B2.

Consider the lower and upper bounds of the Fréchet class B2 with cdfs F(I−1 ,I
−
2 )(i1, i2) =

max (FI1(i1) + FI2(i2)− 1; 0) and F(I+1 ,I
+
2 )(i1, i2) = min (FI1(i1), FI2(i2)). In Figure 1, the points

(1/2, 0, 0) and (0, 1/2, 1/2) correspond to the values of f(I+1 ,I+2 ) and f(I−1 ,I
−
2 ) given by (1/2, 0, 0, 1/2)

and (0, 1/2, 1/2, 0), respectively. It follows that the segment between the points (1/2, 0, 0) and
(0, 1/2, 1/2) corresponds to Fréchet’s class B2.

We define the pair of continuous positive rvs (Y1, Y2) as in (6) with

Y1 = Z1,0 + I1Z1,1 and Y2 = Z2,0 + I2Z2,1.

By Theorem 3.1, (Y1, Y2) follows a bivariate exponential distribution with Yj ∼ Exp (1), j = 1, 2,
and joint cdf F(Y1,Y2) given by∑

(i1,i2)∈{0,1}2
fI1,I2(i1, i2)

(
1− e−2x1

)1−i1 (1− e−2x2)1−i2 (1− e−x1)2i1 (1− e−x2)2i2 , (34)

for (x1, x2) ∈ R2
+. The next result is adapted from Theorem 3.2.

Corollary 6.1. Using Theorem 3.2, we establish that F(Y1,Y2) as given in (34) is also

F(Y1,Y2) (x1, x2) =
(
1− e−x1

) (
1− e−x2

)
+ θ12

(
1− e−x1

) (
1− e−x2

)
e−x1e−x2 ,

for (x1, x2) ∈ R2
+, with

θ12 = 4fI1,I2(0, 0)− 1, (35)

that implies F(Y1,Y2) ∈ EFGM2 . Furthermore, it follows that the corresponding copula C ∈ CFGM2

where C is given by

C (u1, u2) = u1u2 + θ12u1u2u1u2, (u1, u2) ∈ [0, 1]2. (36)
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Hence, as an interpretation of Corollary 6.1, fixing values of the probabilities of the vector f(I1,I2)
in (33) leads through (35) to the value of the dependence parameter θ12 of a FGM copula C given
in (36).

On the contrary, one may also ask how to get the values of the probabilities in f(I1,I2) given a
dependence parameter θ12 ∈ [−1, 1]? The answer also results from Theorem 3.2.

Corollary 6.2. If C ∈ CFGM2 with a dependence parameter θ12 ∈ [−1, 1], then we write the entries
of the vector f(I1,I2) in (33) explicitly in terms of θ12 as follows:

f(I1,I2) =

(
1 + θ12

4
,
1− θ12

4
,
1− θ12

4
,
1 + θ12

4

)
.

Proof. Given the constraints on the values of the probabilities in fI , (33) becomes

f(I1,I2) =

(
fI1,I2(0, 0),

1

2
− fI1,I2(0, 0),

1

2
− fI1,I2(0, 0), fI1,I2(0, 0)

)
, (37)

where fI1,I2(0, 0) ∈
[
0, 12
]
. Combining (35) and (37), we have

θ12 = fI1,I2(0, 0)− fI1,I2(0, 1)− fI1,I2(1, 0) + fI1,I2(1, 1)

= 2fI1,I2(0, 0)− 2

(
1

2
− fI1,I2(0, 0)

)
. (38)

From (38), we find that fI1,I2(0, 0) = (1+θ12)/4. Replacing the latter in (37), we obtain the desired
result.

Given Corollary 6.2, we have that each value of θ12 ∈ [−1, 1] uniquely defines an element of
B2 and a member of the family of bivariate FGM copulas. In summary, Corollaries 6.1 and 6.2
define a one-to-one correspondence between the value of the dependence parameter θ12 and the four
values of the joint pmf of the pair of rvs (I1, I2) (or equivalently, its distribution). That bijection is
depicted in Figure 1.

In addition, since the copula is linear in θ12, one can represent any bivariate copula as a convex
combination of the two extremal copulas constructed with f(I+1 ,I

+
2 ) and f(I−1 ,I

−
2 ), leading to the

parameters θ12 = 1 and θ12 = −1, respectively.

7 Trivariate FGM copulas

While the set of admissible parameters of the bivariate FGM copula is simple (θ12 ∈ [−1, 1]), the
condition θ ∈ T3 isn’t trivial to conceptualize, that is, it isn’t intuitively obvious if a set of parameters
(θ12, θ13, θ23, θ123) will satisfy the eight inequalities in T3. In this section, we study more deeply the
family of trivariate FGM copulas by illustrating the results of Theorem 3.2 in the trivariate case.
When d = 3 in (5), a FGM copula C is given by

C (u) = u1u2u3 + u1u2u3 (θ12u1u2 + θ13u1u3 + θ23u2u3 + θ123u1u2u3) , u ∈ [0, 1]3, (39)

where (8) becomes

θj1j2 = 4fIj1 ,Ij2 (0, 0)− 1, 1 ≤ j1 < j2 ≤ 3 (40)

θ123 = 8fI1,I2,I3(0, 0, 0)− θ12 − θ13 − θ23 − 1 (41)
= −8fI1,I2,I3(1, 1, 1) + θ12 + θ13 + θ23 + 1. (42)

In the remainder of this section, we study specific dependence structures of the trivariate FGM
copula.
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(−1, 1,−1)

(1, 1, 1)

(1,−1,−1)

(−1,−1, 1)

Figure 2: Admissible parameters for the trivariate subfamily with non-null 2-dependence and null
3-dependence parameters, that is, T3,2.

7.1 Subfamily with non-null 2-dependence and null 3-dependence parameters

In this subsection, we consider trivariate FGM copulas with only 2-dependence parameters, that
is, θ123 = 0. The structure within this subfamily does not mean that the vector (U1, U2, U3) is
independent, but that only 2-dependent parameters θj1j2 , 1 ≤ j1 < j2 ≤ 3 have non-zero values.
Note that ρcL3 (U) = ρcU3 (U) = ρc3(U) = ρpw3 (U) for this subfamily. We name T3,2 the set of valid
non-null 2-dependence and null 3-dependence parameters, with

T3,2 =

(θ12, θ13, θ23) ∈ R3 : 1 +
∑

1≤j1<j2≤3
θj1j2εj1εj2 ≥ 0

 ,

for {ε1, ε2, ε3} ∈ {−1, 1}3. Note that T3,2 ⊂ T3. The constraints in (4) implies that (θ12, θ13, θ23) ⊆
[−1, 1]3, which corresponds to the cube in dotted lines from Figure 2. However, for the specific set of
inequalities T3,2 forms a tetrahedron with vertices (θ12, θ13, θ23) = (1, 1, 1), (1,−1,−1), (−1, 1,−1)
and (−1,−1, 1). We present this tetrahedron in Figure 2. The great advantage of the tetrahedron
is that one may interpret the admissible parameters T3,2 geometrically as a 3-simplex, instead of a
set of four inequalities.

Note that CEDP3 defined in Theorem 4.3 is an element of the subfamily of trivariate FGM copulas
studied in this subsection, with θ12 = θ13 = θ23 = 1 and θ123 = 0. The copula CEPD corresponds
to the vertex (1, 1, 1) of the tetrahedron in Figure 2.

Consider the vertex (1,−1,−1). Applying Theorem 3.2, the associated pmf is

fI(i) =

{
1
2 , i ∈ {(0, 0, 1), (1, 1, 0)}
0, otherwise

and observe that the pairs (I1, I2) and (I1, I3) are countercomonotonic rvs and the pair (I2, I3) is
comonotonic. Written differently, the vertex (1,−1,−1) has a one-to-one association with the cdf

FI(i) = max (min [FI2(i2), FI3(i3)] + FI1(i1)− 1; 0) , i ∈ {0, 1}3.

In addition, we have ρcL3 (X) = ρcU3 (X) = ρc3(X) = ρpw3 (X) = −1/9. One obtains identical
results for the vertices (−1, 1,−1) and (−1,−1, 1) of Figure 2 by appropriately interchanging the
components of (I1, I2, I3).
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7.2 Subfamily with 2-independence

Let U = (U1, U2, U3) be a vector of rvs with FU = C and Uj ∼ Unif (0, 1), j ∈ {1, 2, 3}. In this
section, we consider the subfamily of dependence parameters from T3 with θ12 = θ13 = θ23 = 0
and θ123 ∈ [−1, 1]. In other words, trivariate FGM copulas with 2-independence have 2-dependence
parameters equal to 0 and a free 3-dependence parameter on the segment [−1, 1]. We note that
ρS(Uj1 , Uj2) = 0 for 1 ≤ j1 < j2 ≤ 3. Denote A(1), A(−1) ⊂ {0, 1}3 such that

A(1) = {(0, 0, 0) , (1, 1, 0) , (1, 0, 1) , (0, 1, 1)}
A(−1) = {(1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (1, 1, 1)} ,

that is, the sum of the elements are even for vectors in A(1) and odd for vectors in A(−1). Let
fI(1) be defined such that fI(1) (i1, i2, i3) = 1/4, for (i1, i2, i3) ∈ A(1), and fI(1) (i1, i2, i3) = 0, for
(i1, i2, i3) ∈ A(−1). Similarly, let fI(−1) be defined such that fI(−1) (i1, i2, i3) = 1/4, for (i1, i2, i3) ∈
A(−1) and fI(−1) (i1, i2, i3) = 0, for (i1, i2, i3) ∈ A(1). Then, by combining (39) and (41), it follows
that the two resulting trivariate FGM copulas are given by

C(1) (u) = u1u2u3 + u1u2u3u1u2u3;

C(−1) (u) = u1u2u3 − u1u2u3u1u2u3, u ∈ [0, 1]3.

Now, we define fI(θ123) such that

fI(θ123) (i1, i2, i3) =
1 + θ123

2
fI(1) (i1, i2, i3) +

1− θ123
2

fI(−1) (i1, i2, i3) , (i1, i2, i3) ∈ {0, 1}3, (43)

with θ123 ∈ [−1, 1]. Inserting (43) in (39), (40) and (41), the resulting copula is

C(θ123) (u) = u1u2u3 + θ123u1u2u3u1u2u3, u ∈ [0, 1]3. (44)

From (44), we observe that (U1, U2), (U1, U3), (U2, U3) are pairs of independent rvs. However, the
components of U are dependent. Also, (44) corresponds to the copula described at page 554 of
Cambanis (1977). See also Section 1.6.2 of Rüschendorf (2013) for FGM copulas that are (d − 1)-
independent but not d-independent.

Corollary 7.1. Let −1 ≤ θ123 < θ′123 ≤ 1, then I(θ123) �cL I(θ
′
123) and U (θ123) �cL U (θ′123), and

I(θ
′
123) �cU I(θ123) and U (θ′123) �cU U (θ123). Moreover, I(θ123) �sm I(θ

′
123) and U (θ123) �sm U (θ′123)

do not hold.

Proof. See Example 3.8.4 in Müller and Stoyan (2002). One has FI(1)(i) ≥ FI(−1)(i) and F I(1)(i) ≤
F I(−1)(i) for all i ∈ {0, 1}3, where F I(i) is the survival function of I.

Corollary 7.2. If −1 ≤ θ123 < θ′123 ≤ 1, then

1. ρcLd
(
U (θ123)

)
≤ ρcLd

(
U (θ′123)

)
;

2. ρcUd
(
U (θ123)

)
≥ ρcUd

(
U (θ′123)

)
.

Proof. Applying Lemma 5.1 with Corollary 7.1 yields the desired result. Alternatively, one computes
ρcL3 (U) = θ123/27, which is an increasing function of θ123, and ρcU3 (U) = −θ123/27, which is a
decreasing function of θ123.

Observe that ρc3(U) = ρpw3 (U) = 0. Also note that the authors of Schmid and Schmidt (2007)
write ρcUd (X) = θ123/6

3, which is a misprint since it is 23 times too small.
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θextr θ12 θ13 θ23 θ123 f0,0,0 f1,0,0 f0,1,0 f0,0,1 f1,1,0 f1,0,1 f0,1,1 f1,1,1
a 1 1 1 0 1/2 – – – – – – 1/2
b 1 -1 -1 0 – – – 1/2 1/2 – – –
c -1 -1 1 0 – 1/2 – – – – 1/2 –
d -1 1 -1 0 – – 1/2 – – 1/2 – –
e 0 0 0 -1 1/4 – – – 1/4 1/4 1/4 –
f 0 0 0 1 – 1/4 1/4 1/4 – – – 1/4

Table 1: Set of six extremal parameter vectors for trivariate FGM copulas.

(a) (b) (c) (d) (e) (f)

Figure 3: Three dimensional contour surfaces of the extremal points θextr for trivariate FGM
copulas.

7.3 Extremal parameters for trivariate FGM copulas

In Section 6, we mention that any bivariate FGM copula is a convex combination of two bivariate
FGM copulas since the parameters θ12 lie between two extremal points −1 and 1. Similarly, one
can represent any trivariate FGM copula C ∈ CFGM3 as a convex combination of six extremal FGM
copulas. In Table 1, we provide the six dependence parameter vectors θ and the corresponding values
of fI by applying (9) of Theorem 8. Row (a) represents the extremal positive dependent element
detailed in Section 4.2. Rows (b), (c) and (d) represent extreme negative dependent elements, while
rows (e) and (f) represent the two extreme parameter vectors for the subfamily with 2-independence.

To interpret the shape of the trivariate copula density function, we introduce 3-dimensional
contour surfaces in Figure 3. Let uα be the set of points (u1, u2, u3) such that the copula density
function c(u1, u2, u3) = α, for α ≥ 0. Then, the surface of the points uα forms the contour surface
at level α. The contour surface of Figure 3 (color online) presents the contours of u0.5 in blue, u1

in red and u1.5 in green. Then, 3c(u0.5) = c(u1.5), meaning a point is three times as likely to fall
on a green surface than on a blue surface.

The geometric shape of the 3-dimensional contour surfaces for extremal points of 2-dependence
zero 3-dependence (extremal points (a) to (d)) are identical, but rotated along the u3 axis by 90
degrees. The plot (a) represents the extreme positive dependence of the trivariate FGM copula,
and the orientation of the contours have blue surfaces closest to the (0, 0, 0) and (1, 1, 1) corners.
Similarly, plot (b) has blue contour surfaces closest to the (0, 0, 1) and (1, 1, 0) corners. For the
subfamily with 2-independence (plots (e) and (f)), the copulas have a constant value of 1 along the
three axis.

8 Subfamily of FGM copulas: the Markov-Bernoulli process

In this section we aim to understand the dependence structure within a specific subfamily of FGM
copulas induced through a subfamily of multivariate Bernoulli distributions. With the help of the
one-to-one correspondence between the class Bd and CFGMd , we are able to reveal the dependence
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structures that are concealed in the values of θ ∈ Td. Examples of multivariate Bernoulli distribu-
tions can be found in Chapters 7 and 8 of Joe (1997).

This section introduces a subfamily of single-parameter FGM copulas with serial dependence,
constructed with a multivariate Bernoulli model that also exhibits serial dependence. Let {Ij , j ∈
N+} form a stationary Markov chain with a state space {0, 1}, also called Markov chain of order 1
for binary time series in (Joe, 1997, pp. 246-248), with transition probability matrix

P =

(
p0|0 p0|1
p1|0 p1|1

)
=

(
1− (1− α) q (1− α) q
(1− α) (1− q) α+ (1− α) q

)
,

dependence parameter α ∈ [−1, 1], and where pij |ij−1
= Pr(Ij = ij |Ij−1 = ij−1), j ∈ {2, 3, . . . }. We

call this model the Markov-Bernoulli model for the remainder of this paper. The initial probability
associated to P is Pr(I1 = 0) = 1/2. If α = 0, then {Ij , j ∈ N+} is a sequence of iid rvs. For α = 1,
{Ij , j ∈ N+} forms a sequence of comonotononic rvs.

In Cossette et al. (2003), the authors show

P[h] =

(
p
[h]
0|0 p

[h]
1|0

p
[h]
0|1 p

[h]
1|1

)
=

(
1+αh

2
1−αh

2
1−αh

2
1+αh

2

)
,

where p[h]ij |ij−1
= Pr(Ij = ij |Ij−1 = ij−1), j ∈ {2, 3, . . . } and h ∈ N+. The covariance between Ij and

Ij+h is Cov (Ij , Ij+h) = q(1− q)αh, for j ∈ {2, 3, . . . } and h ∈ N+. The pmf of the vector I from a
Markov-Bernoulli process is

fI (i) =
1

2

d∏
m=2

pim|im−1
, i ∈ {0, 1}d. (45)

The following proposition presents the expression of a FGM copula for the Markov-Bernoulli
model and is proved in Section 11.

Proposition 8.1. The expression of a d-variate FGM copula constructed with the d-dimensional
vector I from a Markov-Bernoulli process with pmf in (45) is

C (u) =

d∏
m=1

um

1 +

b d2c∑
k=1

∑
1≤j1<···<j2k≤d

αγj1...j2kuj1 . . . uj2k

 , u ∈ [0, 1]d,

where γj1...j2k =
∑k

l=1 (j2l − j2l−1). The k-dependence parameters are 0 for k odd and

θj1...j2k = αγj1...j2k , (46)

for 1 ≤ j1 < · · · < j2k ≤ d and k ∈ {1, . . . , bd/2c}. Alternatively, we have

C (u) =
d∏

m=1

um

 ∑
i∈{0,1}d

1

2d

d∏
j=2

(
1 + (−1)ij−ij−1α

) d∏
l=1

(
1 + (−1)ilul

) , u ∈ [0, 1]d. (47)

When d = 3, we have the following special cases. For α = 1, it follows that I is a vector of
comonotonic rvs and we have θ12 = θ13 = θ23 = 1 and θ123 = 0, corresponding to the extremal
positive dependence and row (a) of Table 1. For α = −1, we have θ12 = θ23 = −1, θ13 = 1
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(−1, 1,−1)

(1, 1, 1)

(1,−1,−1)

(−1,−1, 1)

(0, 0, 0)

Figure 4: Segment of admissible parameters within the trivariate Markov-Bernoulli FGM copula.

and θ123 = 0, corresponding to row (d) of Table 1. Since θ123 = 0, trivariate Markov-Bernoulli
FGM copulas belong to the subfamily studied in Section 7.1. In Figure 4, one finds a modified
version of Figure 2, showing the segment of admissible dependence parameters for the subfamily
of trivariate Markov-Bernoulli FGM copulas. The segment forms a quadratic curve connecting the
vertex (−1, 1,−1) for α = −1, passing through quadratic function’s vertex at (0, 0, 0) for α = 0,
finishing at the vertex (1, 1, 1) for α = 1.

The following corollary establishes dependence order properties within the subfamily of Markov-
Bernoulli distributions and Markov-Bernoulli FGM copulas.

Corollary 8.2. Let I and I ′ be two Markov-Bernoulli d-dimensional vectors with pmf defined in
(45) with parameters α and α′ respectively. If −1 ≤ α < α′ < 1, then I �sm I ′ and U �sm U ′.

Proof. To show I �sm I ′, we adapt a proof of a similar result presented in Cossette et al. (2020).
Let

P′ =
(

1− (1− α′) q (1− α′) q
(1− α′) (1− q) α′ + (1− α′) q

)
and I be a 2 × 2 identity matrix. Fix c = (1 − α′)/(1 − α). Since −1 ≤ α < α′ < 1, it implies
that c ∈ (0, 1). Because P′ is of the form P′ = (1− c) I + cP and since I1 (and I2) is stochastically
increasing in I2 (in I1), the first result follows from Corollary 3.1 of Hu and Pan (2000). The relation
U �sm U ′ follows from I �sm I ′ and Theorem 4.2.

Remark 8.3. For a copula C ∈ CFGMd , dependence ordering depends on all d? dependence parame-
ters simultaneously, thus it may be difficult to order FGM copulas in general. By limiting oneself to
the subclass of Markov-Bernoulli FGM copulas, along with the result from Corollary 8.2, one can
establish U �sm U ′ directly with a single parameter −1 ≤ α < α′ ≤ 1, even when d is large and
the dependence parameter vector θ is very large. One can say that the subfamily is increasing in
the sense of supermodular ordering with respect to α, for −1 ≤ α ≤ 1.

Example. Let (I1, I2, I3, I4, I5, I6) form a vector of rvs constructed from the Markov-Bernoulli model
with pmf as in (45). LetX be a vector of rvs with cdf FX ∈ HFGM6 . Applying (46), the dependence
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parameter vector of X under the natural formulation is

θj1j2 = αj2−j1 , 1 ≤ j1 < j2 ≤ 6;

θj1j2j3 = 0, 1 ≤ j1 < j2 < j3 ≤ 6;

θj1j2j3j4 = αj2−j1+j4−j3 = θj1j2θj3j4 , 1 ≤ j1 < j2 < j3 < j4 ≤ 6;

θj1j2j3j4j5 = 0, 1 ≤ j1 < · · · < j5 ≤ 6;

θ123456 = α3.

Note that θj1j2 ∈ {α, . . . , α5}, for 1 ≤ j1 < j2 ≤ 6, and θj1j2j3j4 ∈ {α2, α3, α4}, for 1 ≤ j1 < j2 <
j3 < j4 ≤ 6. Inserting the dependence parameter vector into (28) along with elementary algebra,
one has

ρc6(X) = ρcL6 (X) = ρcU6 (X) =
7

57

[
5α+ 4α2 + 3α3 + 2α4 + α5

9
+

6α2 + 6α3 + 3α4

92
+
α3

93

]
,

which leads to the minimal value ρc6(X) = −2000/54711 for α = −1 and the maximal value
ρc6(X) = ρc6(X

EDP ) = 6413/28178 for α = 1.

9 Sampling

Sampling of vectors of large-dimensional random variables is essential in the context of numerous
applications, especially in actuarial science, quantitative risk management, hydrology, etc. In Sub-
section 9.1, we briefly recall the conditional approach, with the contribution of Ota and Kimura
(2021). In Subsection 9.2, we propose a new approach based on the stochastic representation de-
rived in Theorem 3.2. In Subsection 9.3, we conclude by comparing the performance of the two
algorithms in a numerical illustration.

9.1 Conditional sampling method

To our knowledge, the general method to simulate samples of U = (U1, . . . , Ud) when FU = C ∈
CFGMd is the so-called conditional sampling method (see Algorithm 5.1.2 in Mai and Scherer (2014)).
The conditional sampling method is based on the multivariate distributional transform, also called
Rosenblatt transform, introduced by Rosenblatt (1952) for absolutely continuous distributions.
Later, the author of Ruschendorf (1981) generalized this transform to general distributions. Details
on multivariate distributional transforms and its applications for simulations can be found in Section
1.3 of Rüschendorf (2013). Define the conditional distribution function as

Cj|1,...,j−1(uj |u1, . . . , uj−1) = Pr(Uj ≤ uj |U1 = u1, . . . , Uj−1 = uj−1), j ∈ {2, . . . , d}

and uj ∈ [0, 1]. The conditional sampling method consists of recursively computing

uj = C−1j|1,...,j−1(vd|u1, . . . , uj−1), j ∈ {2, . . . , d}, (48)

where u1, v2, . . . , vd are samples from a standard uniform distribution. Then, the vector (u1, . . . , ud)
is a sample from a d-variate FGM distribution. In Section 5 of Ota and Kimura (2021), the authors
show that (48) has a quadratic form, and present a method to compute the inverse conditional
distribution function using the quadratic formula

uj = C−1j|1,...,j−1(vj |u1, . . . , uj−1) =
1 +Dj ±

√
(1 +Dj)2 − 4Djvj
2Dj

, j ∈ {2, . . . , d}, (49)
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where

Dj =

∑j
m=2

∑
1≤n1···≤nm=j θn1...nm(1− 2un1) . . . (1− 2unm−1)

cj−1(u1, . . . , uj−1)
, j ∈ {2, . . . , d}. (50)

However, Ota and Kimura (2021) does not provide general indications for the sign of (49).

Proposition 9.1. The valid solution of (49) is

C−1j|1,...,j−1(vj |u1, . . . , uj−1) =
1 +Dj −

√
(1 +Dj)2 − 4Djvj
2Dj

, j ∈ {2, . . . , d}.

Proof. The solution is valid if C−1j|1,...,j−1(vj |u1, . . . , uj−1) ∈ [0, 1]. Consider (u1, . . . , uj−1) = (1/2, . . . , 1/2).
Then, the denominator of (50) is positive (since the combination is possible) and the numera-
tor is equal to zero, hence Dj = 0. Evaluating (50) at Dj = 0 yields an indeterminate form,
so we consider the limit of (49) as Dj approaches zero. We study the positive sign first. Se-
lect an index 1 ≤ l ≤ j − 1 such that θlj 6= 0. Define the vector ul = (u1, . . . , ul, . . . , uj) =
(1/2, . . . , 1/2− sign(θlj)× ε, . . . , 1/2). One can compute the left limit Dj ↑ 0 using the limit lim

ε↑0
Dj ,

where Dj is evaluated at ul. One can also compute the right limit Dj ↓ 0 using the limit lim
ε↓0

Dj ,

where Dj is evaluated at ul. Applying l’Hôpital’s rule, one has

lim
Dj↑0

1 +Dj +
√

(1 +Dj)2 − 4Djvj
2Dj

= −∞; lim
Dj↓0

1 +Dj +
√

(1 +Dj)2 − 4Djvj
2Dj

=∞,

thus the limit does not exist and the positive sign is the incorrect solution. On the other hand
(using l’Hôpital’s rule, or multiplication by conjugate), we have

lim
Dj→0

1 +Dj −
√

(1 +Dj)2 − 4Djvj
2Dj

= vj ∈ [0, 1], j ∈ {1, . . . , d}.

With the revised proof, we present a first algorithm to generate random d-variate samples from
a FGM copula defined by the parameters θ.

The algorithmic complexity of Algorithm 1 for a single sample is O
(
2d
)
, which grows quickly

for large d. For that reason, it is recommended to perform the simulation of random vectors in
large dimensions using a stochastic model (see page 79 of Mai and Scherer (2014) for more detailed
comments). This is now that the stochastic representation from Theorem 3.2 comes into play.

9.2 Stochastic model sampling method

The representation in (6) and the application of the integral probability transform allow us to
put forward an efficient algorithm for sampling from the multivariate FGM copula. Let Z0 =
(Z1,0, . . . , Zd,0) and Z1 = (Z1,1, . . . , Zd,1) be two independent random vectors of iid exponentially
distributed rv where Zj,0 ∼ Exp(2) and Zj,1 ∼ Exp(1), for j ∈ {1, . . . , d}. Then, Algorithm 2
samples U from a pmf fI .

Avoiding the exponential and the logarithmic operations, Algorithm 3 allows one to sample
from U directly (applying Sklar’s theorem earlier in the process). Let V 0 = (V1,0, . . . , Vd,0) and
V 1 = (V1,1, . . . , Vd,1) be two independent random vectors of iid uniformly distributed rvs where
Vj,0 ∼ Vj,0 ∼ U(0, 1), for j ∈ {1, . . . , d}.
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Algorithm 1: Conditional sampling method for FGM
Input: Number of simulations n, parameters θ
Output: Set of simulations

1 for l = 1, . . . , n do
2 Generate d independent (0, 1) uniformly distributed rvs V (l)

1 , . . . , V
(l)
d ;

3 Set U (l)
1 = V

(l)
1 ;

4 for j = 2, . . . , d do

5 Compute D(l)
j =

∑j
m=2

∑
1≤n1···≤nm=j θn1...nm (1−2U(l)

n1
)...(1−2U(l)

nm−1
)

cj−1(U
(l)
1 ,...,U

(l)
j−1)

.;

6 set U (l)
j =

1+D
(l)
j −

√(
1+D

(l)
j

)2
−4D(l)

j V
(l)
j

2D
(l)
j

;

7 Return U (l) =
(
U

(l)
1 , . . . , U

(l)
d

)
.

Algorithm 2: Stochastic sampling method for FGM
Input: Number of simulations n, pmf fI
Output: Set of simulations

1 for l = 1, . . . , n do
2 Generate n independent random vectors I(l), Z(l)

0 and Z(l)
1 ;

3 for j = 1, . . . , d do
4 Compute Y (l)

j = Z
(l)
j,0 + I

(l)
j Z

(l)
j,1;

5 Set U (l)
j = FY

(
Y

(l)
j

)
= 1− e−Y

(l)
j ;

6 Return U (l) =
(
U

(l)
1 , . . . , U

(l)
d

)
, l = 1, . . . , n.

Algorithm 3: Stochastic sampling method for FGM, alternative
Input: Number of simulations n, pmf fI
Output: Set of simulations

1 for l = 1, . . . , n do
2 Generate the independent random vectors I(l), V (l)

0 and V (l)
1 ;

3 for j = 1, . . . , d do

4 Set U (l)
j = 1−

√
1− V (l)

j,0 ×
(

1− V (l)
j,1

)I(l)j ;

5 Return U (l) =
(
U

(l)
1 , . . . , U

(l)
d

)
, l = 1, . . . , n.
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A great advantage of Algorithms 2 and 3 compared to Algorithm 1 lies on the simulation
procedure of samples of the random vector I. That procedure depends on the specification of
the d-variate FGM copula. If one specifies the multivariate distribution of the random vector I,
one can sample observations using the stochastic representation of Theorem 3.2. If one specifies a
FGM copula from the parameters θ, then one can either use Algorithm 1 or convert the natural
representation into the stochastic representation by computing the pmf of I and then sampling from
Algorithm 3. In addition, the conditional sampling method is sequential, meaning the expression of
C−1j|1,...,j−1(vj |u1, . . . , uj−1), for j ∈ {2, . . . , d} in (49) depends on the previous values u1, . . . , uj−1;
the latter does not lend itself to parallel computing. On the other hand, the stochastic representation
depends on I: after one computes I, parallel computing is feasible.

9.3 Numerical illustration

In this section, we compare Algorithms 1 and 3 for subfamilies of FGM copulas. Some subfamilies
admit alternate stochastic representations from the construction of I that make simulation even
faster than Algorithm 3; in these cases we define new algorithms. Algorithm 1 is typically too long
to compute for d ≥ 10, so we omit computation times for these cases.

9.3.1 Unstructured vector of parameters

A first question of interest is as follows: when should one use Algorithm 1 over Algorithm 3? When
given a vector of parameters θ, for which situation is the one-time computational cost of converting
the parameters θ into a pmf for I more efficient?

The first numerical example considers random parameters (and satisfying the constraints in
(4)) for d ∈ {2, . . . , 6}. We use this example to study the sampling times and algorithmic com-
plexities of Algorithms 1 and 3. When one defines the copula using the parameters θ, there is an
added computational cost of converting the parameters to the pmf of the multivatiate Bernoulli
distribution.

Algorithm 1 requires the computation of (49) and (50) for every sample. The total number of
summation terms in (50) is d?, so the sample complexity for every simulation is O(2d). In total, the
algorithmic complexity for M simulations is O(M × 2d).

The algorithmic complexity of computing a single value of the pmf of I with (9) isO(d?) = O(2d),
and there are 2d values in the support of I, so the total algorithmic complexity of converting a vector
of θ into the pmf of I is O(4d). However, this conversion is only required once, and is amortized
(distributed) across samples when the number of simulations is high. Sampling from a vector of
probabilities is O(1) with a one-time setup of O(2d) using the alias method, see Walker (1977).
Finally, sampling a single vector of rvs using Algorithm 3 has algorithmic complexity O(d). We
conclude that the total algorithmic complexity of sampling M observations using Algorithm 3 is
O(4d) + O(2d) + O(M × d). Although Algorithm 3 requires a one-time computational burden of
O(4d), we find that it is usually worth the effort for a large number of samples, since the initial
setup is amortized.

Table 2 presents comparisons for the computation times of different sampling operations; all
times are presented in seconds on a single core from a Intel® Core™ i5-7600K CPU @ 3.80GHz
CPU using the R programming language R Core Team (2021). To use the stochastic representation
within Algorithm 3, one must compute the pmf for the 2d combinations of i ∈ {0, 1}d. We present
this computation time in the first row of Table 2. The second and third rows present the compu-
tation time to sample 10 000 observations from the set of parameters. The last row presents the
extrapolated breakeven point, above which it is more efficient to perform the one-time conversion
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3 4 5 6
Conversion 0.01666 0.09056 0.45711 2.02756

Sampling (Algorithm 1) 0.05700 0.09200 0.29700 0.81600
Sampling (Algorithm 3) 0.01700 0.01000 0.01200 0.01200

Breakeven point 4 165 11 044 16 039 25 218

Table 2: Time comparisons (s) for the natural and stochastic representations of sampling operations

from the natural representation to the stochastic representation.

9.3.2 Extreme positive dependence

Sampling from the UEPD is the fastest case for the stochastic representation since I+ admits positive
pmfs for the two cases 0d and 1d. Algorithm 4 is a simplification of Algorithm 3 to simulate values
of UEPD.

Algorithm 4: Stochastic sampling method for UEDP

Input: Number of simulations n
Output: Set of simulations

1 for l = 1, . . . , n do
2 Generate the independent random vectors V (l)

0 and V (l)
1 ;

3 Generate I(l) ∼ Bern
(
1
2

)
;

4 for j = 1, . . . , d do

5 Set U (l)
j = 1−

√
1− V (l)

j,0 ×
(

1− V (l)
j,1

)I(l)
, for j ∈ {1, . . . , d}.;

6 Return U (l) =
(
U

(l)
1 , . . . , U

(l)
d

)
, l = 1, . . . , n.

Sampling from the EPD copula with Algorithm 1 admits a faster implementation (although not
as significant as in the stochastic representation); one can skip computations since the k-dependence
parameters with k ∈ {3, 5, 7, . . . } are zero. Table 3 compares the simulation times, in seconds. One
notices a large advantage of Algorithm 4 in terms of computation time.

9.3.3 Markov-Bernoulli model

For the subfamily where the random vector I is defined from the Markov chain with binary state
space (Markov-Bernoulli model of Section 8) with pmf as in (45), one can sample I iteratively using
the transition probability matrix starting with I1 ∼ Bern(1/2), as shown in Algorithm 5. In Table
4, we present the simulation times for the different algorithms.

d 3 4 5 6 7 10 15 20
Algorithm 1 0.00154 0.00521 0.01485 0.03789 0.08954 – – –
Algorithm 4 0.00039 0.00052 0.00046 0.00052 0.00057 0.00081 0.00115 0.00146

Table 3: Computation times (s) for 1000 simulations of CEPDd
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Algorithm 5: Stochastic sampling method for the Markov-Bernoulli FGM copula
Input: Number of simulations n, transition matrix P
Output: Set of simulations

1 Generate the independent random vectors V 0 and V 1;
2 for l = 1, . . . , n do
3 Generate I(l)1 ∼ Bern(12);
4 for j = 2, . . . , d do

5 Generate I(l)j ∼ Bern
(
p
I
(l)
j−1|1

)
;

6 for j = 1, . . . , d do

7 Set U (l)
j = 1−

√
1− V (l)

j,0 ×
(

1− V (l)
j,1

)I(l)j ;

8 Return U (l) =
(
U

(l)
1 , . . . , U

(l)
d

)
, l = 1, . . . , n.

d 3 4 5 6 7 10 15 20
Algorithm 1 0.00278 0.01101 0.03089 0.08111 0.19773 NA NA NA
Algorithm 3 0.00194 0.00206 0.00231 0.00267 0.00274 0.00404 0.01159 0.12132
Algorithm 5 0.00060 0.00060 0.00073 0.00092 0.00098 0.00140 0.00206 0.00244

Table 4: Computation times (s) for 1000 simulations for Markov-Bernoulli and α = 0.5.

9.4 Conclusions on the numerical study

We offer the following observations from the numerical study of sampling with FGM copulas. Start-
ing from a vector of parameters θ, the one-time conversion into the pmf of I is the only disadvantage
of using Algorithm 3. There is a breakeven point for converting the parameters, but for high enough
samples, this conversion is worth it.

The conversion is only necessary when one defines a FGM copula using the natural representa-
tion. As stated in Remarks 3.5 and 3.6, the representation using θ is undesirable for large d, while
one can still obtain tractable and interpretable FGM copulas with high d using a single parame-
ter with Markov-Bernoulli model (or other symmetric multivariate Bernoulli random vectors). As
d increases, it is easier to define a FGM copula using the stochastic representation with existing
symmetric multivariate Bernoulli rvs than with the natural representation.

The subfamilies where I can be sampled from a stochastic representation yield the fastest
sampling times. One has considerable advantages of selecting a family of symmetric multivariate
Bernoulli distributions that is simple to sample when dealing with high-dimensional FGM copulas.

10 Proofs of Section 2

We first offer the following Lemma that demonstrates the univariate representation.

Lemma 10.1. Let the random variable (rv) I follow a symmetric Bernoulli distribution. Let Z0

and Z1 be two exponentially distributed rvs with cdf FZl = 1 − e−(2−l)x, x ≥ 0, for l ∈ {0, 1}. Let
the rv Y be defined as Y = Z0 + I × Z1 where I, Z0, and Z1 are independent. Then, Y ∼ Exp(1).

Proof of Lemma 10.1. We have

FY |I=0(x) = FZ0(x) = 1− e−2x = (1− e−x)(1 + e−x), x ≥ 0, (51)
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and
FY |I=1(x) = FZ0+Z1(x) = (1− e−x)2 = (1− e−x)(1− e−x), x ≥ 0. (52)

Combining (51) and (52), we obtain

FY |I=i(x) = FZ0+i×Z1(x) = (1− e−x)(1 + (−1)ie−x), x ≥ 0, i ∈ {0, 1}. (53)

Conditioning on the rv I, using (53), and given that E[(−1)I ] = 0, we find

FY (x) = E[FY |I(x)] = (1− e−x)(1 + e−xE[(−1)I ]) = 1− e−x, x ≥ 0. (54)

Proof of Theorem 3.1. We use Lemma 10.1 to identify the marginal distributions of the rvs Yj , j ∈
{1, . . . , d}. Conditioning on the possible values of I and since the random vectors I, Z0, and Z1

are assumed independent, we first obtain the following joint cdf of Y :

FY (x) =
∑

i∈{0,1}d
fI(i)

d∏
j=1

FZj,0+ijZj,0(xj), x ∈ Rd+. (55)

Inserting (53) in (55) leads to the desired result.

We prove the main theorem using multivariate exponential FGM distributions, but one could also
prove it using the d-variate FGM copula directly. By Theorem 2.2, both approaches are valid. The
proof has two steps. First, we show that the cdfs using the stochastic representation is equivalent
to the cdf using the natural representation. Then, we show that both classes of valid parameters
are equivalent.

Proof of Theorem 3.2. Rewrite (7) in Theorem 3.1 as

FY (x) =

d∏
m=1

(
1− e−xm

) ∑
i∈{0,1}d

fI(i)

d∏
j=1

(
1 + (−1)ije−xj

) ,

which becomes

FY (x) =

(
d∏

m=1

(
1− e−xm

))
EI

 d∏
j=1

(
1 + (−1)Ije−xj

) .
Expanding the product yields

FY (x) =

(
d∏

m=1

(
1− e−xm

))
EI

1 +

d∑
k=1

∑
1≤j1<···<jk≤d

(−1)Ij1+···+Ijk e−xj1 . . . e−xjk

 . (56)

By symmetry of the distribution of I, we have E
[
(−1)I

]
= 0 and

FY (x) =

(
d∏

m=1

(
1− e−xm

))1 +
d∑

k=2

∑
1≤j1<···<jk≤d

EI

[
(−1)Ij1+···+Ijk

]
e−xj1 . . . e−xjk

 . (57)
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Next, one recognizes that (−1)I is also 1− 2I and obtains

EI

[
(−1)Ij1+···+Ijk

]
= EI

[
k∏
l=1

(−1)Ijl

]
= EI

[
k∏
l=1

(1− 2Ijl)

]
= (−2)kEI

[
k∏
l=1

(
Ijl −

1

2

)]
. (58)

Writing θj1...jk = (−2)kEI

[∏k
l=1

(
Ijl − 1

2

)]
and inserting in (57) completes the bijection.

It remains to prove that both admissible sets of parameters coincide, that is, for every θ ∈ Td
and applying (9) yields a valid pmf fI ∈ Bd, and for every fI ∈ Bd and applying (10) yields a valid
set of parameters θ ∈ Td.

From Theorem 2 of Sharakhmetov and Ibragimov (2002), one can express joint distributions of
two-valued random variables as

p(x1, . . . , xd) =

d∏
k=1

pk(xk)

1 +

d∑
k=2

∑
1≤j1<···<jk≤d

αj1...jk

k∏
l=1

(xjl − ajlpjk − bjlqjl)

 ,

xk ∈ {ak, bk}, k ∈ {1, . . . , d}, with pk = pk(ak) and qk = pk(bk) = 1 − pk(ak). From Theorem 1 of
Sharakhmetov and Ibragimov (2002), we have

αj1...jk = E

[
k∏
l=1

Xjl − E[Xjl ]

V ar(Xjl)

]
,

for 1 ≤ j1 < · · · < jk ≤ d and k ∈ {2, . . . , d}. Also, the parameters must satisfy

d∑
k=2

∑
1≤j1<...jk≤d

αj1...jk

k∏
l=1

(xjl − ajlpjk − bjlqjl) ≥ −1, (59)

for xk ∈ {ak, bk}. Substituting ak = 0, bk = 1, pk = 1/2, k ∈ {1, . . . , d}, the constraints become

d∑
k=2

∑
1≤j1<...jk≤d

αj1...jk

k∏
l=1

(
xjl −

1

2

)
≥ −1 (60)

d∑
k=2

∑
1≤j1<...jk≤d

4kE

[
k∏
l=1

(Xjl − E[Xjl ])

](
−1

2

)k k∏
l=1

(2xjl − 1) ≥ −1

1 +

d∑
k=2

∑
1≤j1<...jk≤d

(−2)k E

[
k∏
l=1

(Xjl − E[Xjl ])

]
k∏
l=1

(2xjl − 1) ≥ 0,

for xk ∈ {0, 1} and k ∈ {1, . . . , d}. Inserting (8) and observing that (2xk − 1) , xk ∈ {0, 1} and
k ∈ {1, . . . , d} is equivalent to εk ∈ {−1, 1}, both (60) and (4) span the same constraints. See
also Fontana and Semeraro (2018) for an alternate proof that both admissible sets of parameters
correspond.
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11 Proof of Proposition 8.1

The expression for the joint pmf of the vector of rvs I is

fI (i) = Pr(I1 = i1)
d∏

m=2

pim|im−1

=
1

2

d∏
m=2

(
1 + α

2
× 1{im=im−1} +

1− α
2
× 1{im 6=im−1}

)

=
1

2d

d∏
m=2

(
1 + (−1)|im−im−1|α

)
, (61)

which becomes

fI (i) =
1

2d

1 +

d∑
l=2

∑
1≤j1<···<jl≤d

(−1)|ij2−ij1 |+···+|ijl−ijl−1|αl

 , (62)

for i ∈ {0, 1}d. Also, for 1 ≤ j1 < . . . < jk ≤ d and k ∈ {2, . . . , d}, the expression for the joint pmf
of the vector of rvs (Ij1 , . . . , Ijk) is given by

fIj1 ,...,Ijk (ij1 , . . . , ijk) = Pr(Ij1 = ij1)
k∏

m=2

pijm |ijm−1

=
1

2

k∏
m=2

(
1 + αjm−jm−1

2
× 1{ijm=ijm−1

} +
1− αjm−jm−1

2
× 1{ijm 6=ijm−1

}

)

=
1

2k

k∏
m=2

(
1 + (−1)|ijm−ijm−1

|αjm−jm−1

)
, (63)

which becomes

fIj1 ,...,Ijk (ij1 , . . . , ijk) =
1

2k

1 +
k∑
l=2

∑
1≤n1<···<nl≤k

(−1)
|ijn2−ijn1 |+···+|ijnl−ijnl−1

|
αjnl−jn1

 , (64)

for (ij1 , . . . , ijk) ∈ {0, 1}k. Combining (5), (10) and (64) yields the first result. The result of (47)
follows by replacing (61) within (11).
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